Journal of Organometallic Chemistry, 93 (1975) C20–C22 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

ELECTRONIC STRUCTURE AND REACTIVITY OF YLIDIC SYSTEMS

V*. YLID STRUCTURE INFORMATION FROM NMR DATA

K.A. OSTOJA STARZEWSKI** and M. FEIGEL

Fachbereich Chemie der Universität Frankfurt, Laboratorium Niederrad, Theodor-Stern-Kai 7, (6) Frankfurt/Main (Germany)

(Received May 9th, 1975)

Summary

Bond systems in triphenylphosphorus ylids, methylenetrimethylphosphorane and their tricarbonylnickel salts are discussed by interpretation of ¹³C NMR results.

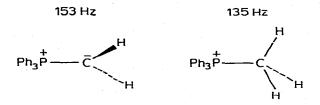
¹³C—¹H coupling constants depend on various factors e.g. s-orbital contribution of the CH-bonds, effective nuclear charge, and excitation energies for ground-to-excited state transitions [2]. For hydrocarbons there exists an empirical linear correlation with s-character [3]:

 $^{1}J(CH) = 500 \text{ Hz} \cdot \%(CH)$

(1)

Recently ¹³C NMR data have been frequently used for investigating the structure and bond system of ylids and related compounds. Using empirical relation 1, the one bond ¹³C⁻¹H₂ coupling constant of 149 Hz in methylene-trimethylphosphorane (CH₃)₃ PCH₂ suggested approximate sp^2 -hybridisation [4]. This conclusion concerning the highly negative charged phosphonium-substituted carbon atom [5], agrees well with the X-ray structures of planar carbanion centers in several triphenylphosphorus ylids [6]. The approximation also applies for the protonated ylid (= corresponding phosphonium salt) (CH₃)₃ P^cCH₃ X⁻ with $J(CH_3) = 133$ Hz [7], as well as for the nickel complex (CH₃)₃ PCH₂ Ni(CO)₃ with $J(CH_2) = 123$ Hz [8], again in agreement with X-ray results for the related (C₆ H₁₁)₃ PCHCH₃ Ni(CO)₃, which indicates a distorted tetrahedral arrangement about the complexed ylid carbon.

In a very recent paper by Albright, Freeman and Schweizer marked discrepancies were reported for methylenetriphenylphosphorane


C20

^{*}For part IV see ref. 1.

^{**} Author to whom correspondence should be addressed.

 $(C_6 H_5)_3 PCH_2$ ($J(CH_2) = 133 Hz!$) [9]. Their results conflict with ours, which are fully consistent with the known structural properties of ylid [6a] and salt [10], and indeed s-contribution appears to be the decisive factor for the ylid carbon ${}^{13}C^{-1}H$ coupling constants.

C21

Their NMR data cannot be assigned to salt-free [11] $Ph_3 PCH_2$, but exhibit characteristic features of sp^3 -carbons connected to phosphorus^{*}. Consequently their interpretations, based on changes in effective nuclear charge, led to rather confusing conclusions, involving variations in the "ylid double bond contribution":

 $R_3 \stackrel{-}{P} - \stackrel{-}{C} H_2 \iff R_3 P = C H_2$

From our values of the methyl/phenyl *P*-substituted phosphinemethylenes $Ph_{3-n}Me_nPCH_2$ (n = 0, 1, 2, 3) no "dramatic change" in the bond system can be discerned (Table 1). The slight increase in ${}^{1}J({}^{13}C-{}^{1}H)$ from IV to I

TABLE 1

METHYL AND METHYLENE COUPLING CONSTANTS ¹J(¹³C-¹H) (Hz) FOR YLIDS

No	Compound	CH3	CH2	Reference
ī	Ph, PCH,		153	own work
11	(CH ₃)Ph ₂ PCH ₂	129	151	own work
111	(CH,), PhPCH,	129	149	own work
IV	(CH ₃) ₃ PCH ₂	127	149	4

is paralleled by a more pronounced increase in ${}^{1}J({}^{31}P^{-13}C)$. The value of the carbon atom coupling in the ylid I was reported to be 52 Hz, but is in fact, 100 Hz which compares with 90 Hz [4] in IV.

We will publish later a more detailed account of our ¹³C NMR of substituent effects in ylidic systems, which reveal strong influences on the ylid carbon ³¹P—¹³C couplings and chemical shifts [12].

Experimental

Salt-free pure ylids were prepared as described by Köster [11] by use of NaNH₂ in boiling THF, with rigorous exclusion of air and moisture. PFT-NMR spectra were recorded on a Bruker HX-90/4-15, equipped with a Nicolet computer series 290/1080. Sealed tube samples of ylids in benzene- d_6 or THF- d_8 (no ΔJ values were observed) were used, while the triphenylmethyl-phosphonium salt was dissolved in CDCl₃.

*Depending on the procedure used in isolating the ylid, we find that the CH-coupling is reduced by interactions with lithium halides.

Acknowledgement

This work was supported by Prof. H. tom Dieck, Prof. H. Kessler and the Deutsche Forschungsgemeinschaft.

References

- 1 K.A. Ostoja Starzewski, W. Richter and H. Schmidbauer, Chem. Ber., (1975) in press.
- 2 C.E. Maciel, J.W. McIver, Jr., N.S. Ostlund and J.A. Pople, J. Amer. Chem. Soc., 92 (1970) 1 and references therein.
- 3 J.B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, N.Y., 1972 and ref. therein.
- 4 H. Schmidbaur, W. Buchner and D. Scheutzow, Chem. Ber., 106 (1973) 1251.
- 5 K.A. Ostoja Starzewski, H. tom Dieck and H. Bock, J. Organometal. Chem., 65 (1974) 311.
- 6 a J.C.J. Bart, J. Chem. Soc., B, (1969) 350.
- 6 b A.J. Speziale and K.W. Ratts, J. Amer. Chem. Soc., 87 (1965) 5603.
- 6 c F.S. Stephens, J. Chem. Soc., (1965) 5640 and 5658.
- 6 d P.J. Wheatley, J. Chem. Soc., (1965) 5758.
- 7 V.H. Elser and H. Dreeskamp, Ber. Bunsenges. Phys. Chem., 73 (1969) 619.
- 8 F. Heydenreich, A. Mollhach, G. Wilke, H. Dreeskamp, E.G. Hoffmann, G. Schroth, K. Seevogel and W. Stempfle, Isr. J. Chem., 10 (1972) 293.
- 9 T.A. Albright, W.J. Freeman and E.E. Schweizer, J. Amer. Chem. Soc., 97 (1975) 940.
- 10 C.J. Fritchie, Acta Cryst., 20 (1966) 107.
- 11 R. Köster, D. Simic and M.A. Grassberger, Liebigs Ann. Chem., 739 (1970) 211.
- 12 K.A. Ostoja Starzewski and H. tom Dieck, Chem. Ber., (1975) in press.